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Abstract-Various constitutive models for the description of the elastoplastic deformation with an
anisotropic hardening and also a transition from the elastic to the normal-yield (fully-plastic) state
have been proposed in the past. Among them the two surface model has bl'Cn widely used for
predictions of mctal or soil deformation behavior. which is regarded as a simplification of the multi
surface model (a field of hardening moduli) extended from the kinematic hardening model. The
past formulation of this model is not given in a mathematically exact form with generality applicable
to materials with not only hardening but also softening behavior. In this paper. a reasonable
formulation of the two surface model is given by deriving a mathematical condition which must be
satisfied in order that surfaces do not intersect in their relative translation and which will be called
a "non·intersection condition" and by proposing a reasonable measure to represent an approaching
degree to the normal-yield state. This model is extended to the three surface model which enables a
sn1lloth elasticrlastic transition to be described. Besides. a loading criterion for hardening/softening
materials is derived in a stress formulation. Finally. some comments on past models or formulations
arc made compared with the present formulation.

INTRODUCTION

I\n exlension of the kinematic hardening model (Edelman and Drucker. 1951; Ishlinski.
1954; Prager. 1956) so as to describe even a deformation proceeding in the transition from
the elastic to the normal-yield (fully-phtstic) state. which would obey Masing's rule (Masing.
1926), has been attempted by Mroz (1967. 1969) and Iwan (1967) independently. Their
extended models are, however. of complex form assuming multiple "subyield (nesting yield)
surfaces" encircled by a "normal-yield (bounding or limiting) surface", which has been
called a "multi surl~tce model", Thereafter. based on them. a simplified model employing
a normal-yield surface and only one "subyield (inner yield) surface" enclosing a purely
e1aslic domain has been formulated by many workers (Dafalias and Popov, 1975. 1976,
IlJ77: Krieg. IlJ75; M roz el al.• 1979; Hashiguchi, 19H I) which has been called a "two
surface model",

The past constitutive e4uations in the framework of the multi or two surface model
have not been formulated exactly on the basis of mathematical verifications, however.
Especially, little consideration has been given to formulating the mathem.ltical condition
which regulates a surface so as not to protrude from an outer larger surface, i,e. which
keeps surfaces from intersection at their relative translation. Therefore. even though the
past equations could analyze the deformation of specialized materials exhibiting only a
hardening behavior, they give rise to a mathematical contradiction on the translation of
assumed surfaces in the deformation .In.l1ysis of generalized material with not only hard­
ening but also softening behavior.

In this paper. the two surfal.:e model is formulated in mathematil.:ally exact forms. On
this formulation th~ "non-int~rsection condition" of surfaces is dcrivcd. and then the
translation rul~ of th~ subyield surfal.:e is formulated so as to satisfy this condition. Besides.
assuming a r~asonabk measur~ to desl.:rib~an approaching degree to the normal-yield state,
the plastic strain r,lte is formulated so as not to violate the non-intersection condition.
Further. this model is ext~nded so as to describe the smooth clastic-plastic transition by
incorporating th~ third surface, named a "subloading surfacc", which exists within the
subyicld surface and is g~ometrically similar to it. This model is called a "three surface
model", which is regarded as a combination of thc two surface modcl and the subloading
surface model (Hashiguchi. 1980). Besides. the loading critcrion for hardening/softening
materials is derived within the framework of the stress space formulation.
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Fig. I. The normal-yield state illustrated as an envelope curve of reloading state.

BASIC CONSTITUTIVE EQUATIONS IN THE NORMAL-YIELD STATE

A typical stress/strain curve of elastoplastic materials is schematically illustrated in
Fig. I. First, one assumes that the normal-yield state shown by the envelope curve of
reloading curves is described by

where one sets

f(a) - F(K) = 0

a == a-i.

( I )

(2)

The second-order tensor a is a stress, and the scalar K and the second-order tensor i are
parameters to describe, respectively, the exp.msion/contraction and the translation of the
surface. For simplicity, one assumes that the surface described by eqn (I), called a "normal­
yield surface", expands/contracts retaining a geometrical similarity in a stress space. There­
fore, function f is to be a homogeneolls function of arguments. Then, let the degree of f
be denoted by fl.

Let K where a superposed dot designates a material time derivative be a function of
some plastic internal state variables and the plastic strain rate i r in degree one by the
dimensional invariance of time.

Further, let ri be'given as

(3)

in accordance with the previous paper (Hashiguchi. In I), where

(4)

A (~O) and B (~O) are scalar functions of K and i, and the notation II II is used to
represent the magnitude.

By differentiating eqn (I) and substituting the relation

one has the consistency condition

j)f nF._.- = ------ n
i"a tr (ria)

Ii == ~/II~~fl

(5)

(6)
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which is given as
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(7)

(8)

by incorporating eqn (3).
Here. one assumes that the elastic deformation only can proceed when the stress ex.ists

within the normal-yield surface and that the elastic property is not affected by the plastic
deformation. Then. in accordance with Drucker's interpretation (Drucker. 1951). one
incorporates the associated flow rule

£P = 1;, (9)

where 1is a positive proportionality factor. By substituting eqn (9) into eqn (8) the plastic
strain rate is given as

where

. tr (ria) .
£P = ~~-n

D

• 1 F' ( .)[) == .~ tr (ria)+A tr2 ;,+8tr2 ;, (J

n /. 110'11

., dF
f == -.

dK

( 10)

( II )

(12)

~ is a scalar function of stress. plastic internal state variables and;' in degree one, which is
given hy

[(0) = F

Fig. 2. Normal-yield and subyicld surfaces.
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,( = k..I (13 )

TWO SURFACE MODEL

One introduces the subyield surface (Fig. 2) which is geometrically similar to the
normal-yield surface and translates within the normal-yield surface. Here. assume that the
current stress exists on or within the subyield surface and that the elastoplastic deformation
can proceed when it exists on the subyield surface. but only the elastic deformation can
proceed when it exists within th.1t surface. Then. let the 5ubyield surface be described by

where one sets

f(ti) -r"F(K) = 0 (14)

([5)

r (0 < r < 1) is a material constant and the second-order tensor i is a parameter to describe
a translation of the surface.

Now. let the conjugate point on the normal-yield surface having the same outer-normal
direction as that of the subyic1d surface at the current stress a be denoted by ay (Fig. 2).
Namely. it holds thal

where

. I _
a = (f

y r

_ = iif,/IIIDfl,1n_ I ..
iVi' ?ii t'I . I

(16)

(17)

(\ 8)

( 19)

(20)

Here. assume that transl.ltion rule (3) of the normal-yield surface holds also in the
subyicld state. provided that the stress in eqn (3) is regarded as the conjugate stress tTy.

Hence, noting rdation (16), one has

(21 )

Now, one considers the translation rule of the subyicld surface. Le. a.. Since the subyicld
surface must exist within the normal-yield surface. it must hold that

(22)

where
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Fig. 3. Nortllal-yidd and subyidd surfaces in contact.
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(23)

letting ere denote the intersecting point of the subyicld surface and the half line starting from
the point i and passing through the point i in the stress space (Fig. 2).

Expression (22) can bc written as

(
of I) .tr ~-:- ere ~ F when f(dJ = F
{dle

(24)

in a differential form. Let the condition which must be satisfied in order that the surfaces
do not intersect but may contact. such as expression (22) or (24), be called a "non­
intersection condition".

In the state that the subyicld surilice contacts with the normal-yield surface (Fig. 3) it
holds that

where

a == i-i.

By relation (25), expression (24) can be expressed as

tr (~£il) ~ (I-r)"F when f(a) = (I-r)"F.
iYa

Further, noting the relation

(25)

(26)

(27)
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cf n( l-r)"F
-= n,ca tr (n,a)

(~f cf
ca ca,

n, == II~fll = II ~! II
I (a:, (0'''

(28)

(29)

the non-intersection condition (27) is rewritten as

(30)

In order to satisfy expression (30), one assumes the following relation, presupposing the
convexity of the yield surfaces (Fig. 3):

Ita- - .a = Jilln E,

where Ii (~O) is a proportionality factor and

which is also expressed as

I _ .
fl == .0'-0'

r

(31 )

(32)

(33)

by eqns (15), (16) and (18), where a is given by eqn (2), letting 0' mean a current stress on
the subyield surface but not a conjugate stress on the normal-yield surface.

From eqn (31) one has

. . It
:i = Ii + a + lifJ

nF

where it is given as

by substituting eqn (34) into the consistency condition

which is derived by differentiating egn (14) ~lnd substituting the relation

(34)

(35)

(36)
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cf nr"F _
ca = tr (iia) n. (37)

Finally. one formulates the plastic strain rate so as to satisfy the condition J1 ~ O. Since
the interior of the subyield surface is an elastic region. the associated flow rule holds also
for the subyield surface

tiP = Iii

where I is a positive proportionality factor.
The inequality Ii ~ 0 results in

noting that

tr (iiP) ~ 0

in eqn (35).
Substituting eqns (21) and (38) into expression (39) leads to

tr (iia)-15I~0

where

_ IF' ( a)[) == . .... R. tr (iia) + A tr~ ii + B tr~ ii .._.
n F nan

(38)

(39)

(40)

(41 )

(42)

R. is a scalar function of stress. plastic internal state variables and ii in degree one. which is
givcn by

(43)

Also. K is the function that the argument Ii is replaced by ii in the function R..
Now. noting that the plastic strait) rate equation must reduce to eqn (10) in the normal­

yield state (a = a y). one assumes for Ito be given by

where Ii and fI arc functions of the parameter

I
h = - tr (ii R )F"n P

satisfy the condition

" = I and H = 0 when h = O.

(44)

(45)

(46)

The parameter b is interpreted as the measure to describe the approaching degree to the
normal-yield state (Hashiguchi. 1981).

By letting the left-hand side of expression (41) be denoted by i. and substituting eqn
(44) into it. one has
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which is not necessarily nonnegative.
In the case of

h i= I and H = 0

one has

x= (h-I)151. (:::: h~ I tr (nu))

which also is not necessarily nonnegative.
In the case of

Ir :::: I and II ~ 0

one has

x:::: IIi

('+7)

(48)

(49)

(50)

(51 )

which is nonnegative. and therefore expression (39) or (41) is always satisfied.
Eventually. the plastic strain rate is given from elJns (38). (44) and (50) as follows:

.p _ tr (no') _
e - i5+lIn. (52)

Here. note that in the hardening state satisfying tr (no') > 0 and 15 > O. the smaller the
parameter h the larger the magnitude of plastic strain rate is. From this one knows that the
function II for the general material with a hardening behavior should be a monotonically
increasing function of h.

The above modification based on the non-intersection condition is relJuired also for
the multi surface model formulation (Mroz. 1967).

THREE SURFACE MODEL

The two surf~lce model brings about an abrupt change of the strain rate/stress rate
relation when loaded from the stress state within the subyield surface since the interior of
this surface is assumed to be a purely elastic domain. so that it cannot describe a smooth
clastic-plastic transition. This trend is remarkable especially when a current stress passes
through the contact point of the normal-yield and the subyield surfaces. As a more funda­
mental problem. the loading criterion must include the judgement whether a current stress
lies on the subyicld surface or not. i.e. yield condition (14) which leads to a disadvantage
in a stress/strain calculation. since it assumes an elastic domain.

Now. one extends the foregoing two surface model so as to express the smooth c1astic­
plastic transition in accordance with the three surface theory (Hashiguchi. 1981) which
incorporates a subloading surface (Hashiguchi. 1980) within the subyield surface. The
subloadingsurface is the surface that is geometrically similar to the subyicld surface with
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Fig. 4. Normal-yield. subyicld and subloading surfaces.
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respect to i (Fig. 4) and passes always through a current stress point not only in a loading
state but also in an unloading state, and thus the loading criterion need not include a
judgement whether a stress lies on a subyield surf~lce or not. In the subloading surface
concept the following parameter is introduced:

R = ,I {JJ~)}I:n
r F

(53)

which designates the ratio of the size of the loading surface to that of the subyicld surface.
Hereinafter let the conjugate point on the subyidd surface be denoted by a, and then it
holds that

as = aiR

it, = it

where

_ D!/IID!II
n, E: I'a~ IDa~ .

Differentiation of egn (53) leads to

tr (iti) = tr [,;{a-G ~+ ~)a}J

From egn (36) and rewriting (1 as (1,. noting eqn (55), one has

Substituting eqn (58) into eqn (59), one obtains

(54)

(55)

(56)

(57)

(58)

(59)
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(60)

Here. one assumes that R, R is nonnegative in the loading state and is given by

R,R = VIWII

where V (~O) is a monotonically decreasing function of R. satisfying the condition

V = 0 when R = I.

(61 )

(62)

Further. assume that the associated flow rule holds also for the loading surface. Then.
eqn (61) is rewritten as

or

Rj R = V tr (niP)

RjR = vJ..

(63)

(64)

Substituting eqns (60) and (61) into eqn (34) with eqn (35) and eqn (52) with eqn (42)
with regarding t'I in equations of the two surface model to be (1,. one has

. , Ii> .
ri. =~+ !,a+ii/I

11 •

. , tr (nO') _e l = ._ _. n
D + fI + V tr (nli)

(65)

(66)

(67)

(1 in i5 given by eqn (42) being a current stress. ci and h arc given by the same equations as
eqns (21) and (45). respectively.

The two surface model predicts a discontinuous stress rate/strain rate relation and is
incapable of describing a plastic deformation due to the stress change within the subyield
surface the interior of which is assumed to be a purely elastic domain. These shortcomings
are excluded in the three surface model. On the other hand. the three surface model predicts
an excessive mechanical ratchetting effect. since the center of similarity of the subyield and
the normal-yield surfaces is fixed in the center of the subyield surface while an unloading
(elastic deformation) proceeds until the stress returns the center of similarity. This short­
coming would be modified by letting the center of similarity translate within the subyield
surface.

A LOADING CRITERION

The plastic strain rate obeying the associated flow rule is generally given by

(68)

where
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." tr (mr)
.... ==-L-
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(69)

as seen in eqns (10), (52) and (67). In eqns (68) and (69). ;: is a positive proportionality
factor, n a unit outer normal of the loading surface and L a function of stress and some
plastic internal state variables.

By substituting

and eqn (68) into eqn (69). one has

(70)

(71)

.. tr {nE(i-;:n)}
.... = L (72)

where i is a strain rate. i e an elastic strain rate and the fourth-order tensor E an elastic
modulus. While from eqn (72) one obtains the expression of J. by the strain rate instead of
the stress rate. let it be denoted by A

It holds that

tr (nEi)A == ~-------~~--.
L+tr(nEn)

tr (mr) ~ 0

(73)

(74)

in the unloading state, while expression (74) holds also in the loading state with a softening.
Since it holds that a = HI: in the unlo,tding. expression (74) is rewritten as

(75)

in the unloading state.
If L + tr (nEn) < O. a plastic deformation cannot occur for tr (nEi) > 0 by the collateral

condition A> 0 for i P #- O. Further. if L + tr (nEn) = 0, a plastic deformation can occur
only for tr (nEe) = O. These facts and expression (75) lead to the shortcoming that any
deformation cannot occur for tr (nEe) > O. while real materials can undergo a strain rate
of any direction (this point is fundamentally dilferent from a stress rate). On the other
hand. if L + tr (nEn) > O. a plastic deformation proceeds for tr (nEe) > O. while an clastic
deformation proceeds for tr (nEe) ~ O. Eventually. in order to describe a strain rate of any
direction. it must hold that

L+tr (nEn) > 0 (76)

while L can take both positive and negative values but tr (nEn) > 0 since tr (nEn) is of the
quadratic form and E is a positive definite as known from tr (eeEi e

) = tr (ai e
) > 0 (i e #- 0).

A loading criterion should be given as

eP #- 0 for tr (nEe) > 0

i P = 0 for tr (nEe) ~ 0 (77)

while constitutive equations with a purely elastic domain require a further judgement
whether a yield condition (egn (I) for the classical theory and egn (14) for the two surface
model) is satisfied or not. Equations (77) were shown by Hill (1958) presupposing L > O.
i.e. a hardening material and assumed a priori by Mroz and Zienkiewicz (1984) in a different
approach. i.e. a strain space formulation of plastic constitutive equations.
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On the other hand. consider;: in eqn (69) expressed by a stress rate. The loading in
the state L < 0 brings about a softening in which tr (nti) < 0 and L < 0 leads to ;: > O.
However. the unloading tr (na) < 0 in the state L < 0 also leads to ;: > o. Thus. ;: > 0 is a
necessary condition but not a sufficient condition for a loading state. Eventually. ;: cannot
be adopted as a quantity to define a loading criterion for materials exhibiting not only a
hardening but also a softening behavior.

COMMENTS ON PAST MODELS AND FORMULATIONS

Various models assuming plural surfaces have been proposed in the past: the two. the
multi and the infinite surface models. In what follows. some comments on these past models
and formulations are made comparing with the two and the three surface models formulated
in this paper.

Translation rule of slIhyidd slIrjllce
In the multi surface model. so-called a "model ofa field of hardening moduli" proposed

by Mroz (1967). the translation rule of the active subyield surface was assumed a priori as
follows:

(78)

whidl was used by Mroz (1969). Prevost (1977, 197X, 19X2). Faruque (1985) and Gilat
(19X5) for the multi surface model formulation and by Krieg (1975). Lamba and Sidebottom
(197X), Prevost (19X2), Chaboche and Rousselier (19X3), Bruhns (1984), Mcdowell
(198541, b), Shaw and Kyriakides (1985), Chaboche (1986) and Ohno and Kachi (1986) for
the two surface model formulation. Equation (78) coincides with eqn (34) in the case of
the non-hardening normal-yield surface, i.e. j: = 0 and i% = O.

Also for the multi surfal:e model formulation. Mroz et al. (1978) adopted, however.
the difrerent equation

(79)

which was used by Mroz et al. (1979) and Hashiguchi (1981) for the two surface model
formulation.

Further, Dafalias and Popov (1975, 1976, 1(77) incorporated the equation

(80)

for the two surfal:e model formulation. In eqns (78)-(80), Ii). li~ and Ii) arc pOSItive
proportionality factors which can be expressed explicitly by substituting these equations
into the consistency condition (36), whereas they do not examine the positivity of Ii), li~

and Ii) in their formulations of plastic strain rate equations.
Equations (68) -(70) do not satisfy generally the non-intersection condition (30).

Ateasllre of approaching degree to the normal-yield slllte
In the formulation of the two surface model. Krieg (1975). Dafalias and Popov (1975)

and Mroz ct al. (1979) assumed the parameter

h' == 111l11/F) n

as a measure to describe the approaching degree to the normal-yield state.

(81 )
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[(if) = F

Ib" I > Ibb I
lt111 < II':,!

Fig. 5. A measure of approaching degrec to thc normal-yield statc.
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As the current stress approaches the normal-yield state. b becomes smaller. On the
other hand. there exists the case that h' becomes larger inversely in that approach as
illustrated in Fig. 5 in which h = tr (ii/I)ii = hF I "ii.

While h would oe a reasonable measure of approach to the normal-yield state. h' is
unacceptable as that measure.

The idea of l'lIni.l'hing elastic domain
[)al~tlias and Popov (1977). Mroz et al. (1979, 1981) and Mroz (1980) insisted the

validity of the idea of a vanishing elastic region as the limiting case of the two surface
modd. in which the subyield surl~lce diminishes to a point. Further. they assumed that a
conjugate point on the normal-yield surface lies on the extension of the stress rate vector
stemming from the current stress point or the center of the normul-yidd surface. This idea
muy be expected to be capable of describing the dependence of the direction of the plastic
strain rate on the stress rate. thut is. the "pseudo-corner effect" and also the smooth c1astic­
plastic transition.

For example. consider the softening state as shown in Fig. 6. There occurs u fatal

o

Fig. 6. An cxample of disproof for thc idea of the vanishing clastic domain.
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contradiction that the conjugate point lies on the opposite side of the normal-yield surface
the outer-normal direction of which differs entirely from the actual direction of the plastic
strain rate i P

• predicting the plastic strain rate i P with an extremely large value of b (or b').
[t would be adequate to assume a small subyield surface in order to express some

dependence of the direction of plastic strain rate on the stress rate. It would be. however.
physically unreasonable that the direction of the plastic strain rate depends mainly on the
stress rate but not on the stress state as is predicted by the idea of a vanishing elastic region.
This idea describes the stress rate dependence stronger than the corner effect of the yield
surface. since it makes the yield surface shrink to a point. Eventually. this idea is not
acceptable physically and mathematically at present.

Expansion rule of loading slirface
The author (Hashiguchi. 1980) assumed the equation

RIR = UF (82)

in the previous three surface model. According to this equation. the current stress cannot
approach to the subyield surface but recedes from it in the non-hardening state t ~ O. On
the other hand. eqn (61) would be applicable to the generalized material with not only
hardening but also softening behavior.

The mulli aflel Ihc in/inilc slI'.I(/(·c models
[n the multi surface model whicll was proposed by Mroz (1967) and [wan (1967)

independently. the current stress transfers steadily to larger active subyield surfaces. This
model needs to memorize all of the assumed surfaces. Further. a reloading after a partial
reverse loading produces an abrupt change of the stress rate/strain rate relation when the
stress passes through the stress reversed point because the stress transfers abruptly to the
large subyield surface which was an active subyield surface just before the reverse loading
took place.

Mroz ('I al. (19X I). Mroz and Norris (1982) and M roz and Pietruszczak (1983) relined
the multi surface model mathematically by imaging a field of an infinite number of subyield
surf~tces the sizes of which range from a point to the normal-yield surface. A salient feature
of this formulation is the hypothesis of "stress reversal surface". This is the surface which
was an active subyield surface just before a reverse loading took place. Then. a new active
subyield surface expands contacting with the stress reversal surface at the stress reversed
point. This model. named an "infinite surface model". may be regarded also as a reasonable
formalization of the loading surl~tce concept introduced by Greenstreet and Phillips (1973)
for artificial graphite. It is a notable improvement of the multi surface model because it
needs to memorize only three kinds of surface: an active subyield surface on which a current
stress exists. a normal-yield (bounding or limiting) surface and stress reversal surfaces. [n

the case of the cyclic loading with decreasing amplitudes. however. many stress reversal
surfaces should be memorized. on which stress reversal events took place before then.
Further, the abrupt change of the hardening modulus in a reloading after a partial reverse
loading cannot be avoided also by that model.

REFERENCES

Bruhns. O. T. (19S-l). Some remarks on the application of a two-surface model in plasticity. Acta .\I<'clr. 53. S I.
Chahoche. J. L. (19X6). Time-independent constitutive theories for <.:yelic plasticity. r"t. 1. Plasticity 2.1-19.
Chaboche. J. L. and Roussclier. G. (19X3). On the plastic and viscoplastic constitutive equations: Pari 1-Rules

developed with internal state variahle concepl. 1. P"'.HUf<' 1'('.<.<'" Tech""I. (.·'SME) 105. 153.
Dafalias. Y. F. and Popov. E. 1'. (1975). A model of nonlim:arly hardening materials for comple~ loading. Acta

Jft'ch. 2t, 173.
Dafalias. Y. F. and Popov. E. P. (1976). Plastic internal variahles formalism of cyclic plasticity. J. Apf'l. Meeh.

(ASAlE) 43. MS.
Dafalias. Y. F. and Popov. E. P. (1977). Cyclic loading for materials with a vanishing clastic region. Nuc/. Eny"y

D,'s. 4" 293.



A mathematical modification of two surface model formulation in plasticity 1001

Drucker. D. C. (l95\). A more fundamental approach to plastic stress-strain relations. Proc. lsI r.:.S. NaIl Congr.
Appl..\Iech. (ASJIE). p. 487.

Edelman. F. and Drucker. D. C. (1951). Some extensions of elementary plasticity theory. J. Franklin Insl. 251.
581.

Faruque. M. O. (1985). On the description of cyclic creep and rate dependent plastic deformation. Acta J/ech.
55. 123.

Gilat. A. (1985). A viscoplastic theory with anisotropic hardening and its application to pressure-shear plate
impact experiments. J. Appl. Mech. (AS.\I£) 52.629.

Greenstreet. W. L. and Phillips. A. (1973). A theory of an elastic-plastic continuum with special emphasis to
artificial graphite. ACla ,\Iech. 16. 143.

Hashiguchi. K. (1980). Constitutive equations of elastoplastic materials with elastic-plastic transition. J. Appl.
Mech. (ASJ/£) 47. 266.

Hashiguchi. K. (1981). Constitutive equations of elastoplastic materials with anisotropic hardening and elastic-
plastic transition. J. Appl. Mech. (ASJ/£) 48. 297.

Hill, R. (1958). A general theory of uniqueness and stability in elastic-plastic solids. J. .\Icch. PhI'S. Solids 6.236.
Ishlinski.1. U. (1954). General theory of plasticity with linear strain hardening. Ukr..\(al. Zh. 6. 314.
Iwan. W. D. (1967). On a class of models for the yielding behavior of continuous and composite systems. J. Appl.

Mech. (ASM£) 34. 612.
Krieg, R. D. (1975\. A practical two surface plasticity theory. J. App/. Mcch. (ASM£) 42. 641.
Lamba. H. S. and Sidebottom. O. M. (1978). Cyclic plasticity for nonproportional path: Part 2-Comparison

with predictions Ill' three incremental plasticity methods. J. £nqnq ."'uler. T,·ch"ol. (,.ISM £) 100. 104.
Masing. G. (1926). Eigenspannungen und Verfestigung heim Messing. Pmc. :nd Int. Congr. Appl. Mech .. Zurich.

p.332.
Mcdowell. D. L. (1985a). A two surface model for transient nonproportional cyclic plasticity: Part I. Development

of appropriate equations. J. :lppl. Mcch. (:ISM £) 52. 298.
Mcdowell, D. L. (1985b). An experimental study of the structure of constitutive equations for nonpwportional

cyclic plasticity. J. F.""n" .\("Ier. Tec/lllol. (.-IS.\IF.) 107.307.
Mro/.. Z. (1%7). On the' description Ill' anisotropic workhardening. J. Mec/,. PhI'''. Solid, I~. 163.
Mw/.. Z. (1969). An altempt to descrinc the nchavior of metals under cyclic loads using a more general work­

hardenlOg model. .-11'1" .\Iech. 7. 199.
Mro/.. Z. (1980). On hypoelasticity and plasticity approaches to constitutive model of soils. 1,,1.1. Nllmer. 1I",,1l·.';"

Melh. (;eomech. 4.45.
MWI.• 7.. and Norris. V. A. (1'/82). Ebstoplastit: and viseoplastit: wnstitutivc models for soils with anisotwpic

loading. In Soil Mecl/ll,,;n ~ "['rll1we1l/ I.owl, (Editcd by G. N. Pande ami O. C. Zienkiewit:/.), p. 219. Wiley,
New York.

Mro/.. Z. and Pietrus/.t:7ak. St. (1983). A t:onstitutive model for sand with anisotropit: hardcning rule. 111/. 1.
NIIII/er ..·'""lrs;.' Melh. Geomech. 5. 285.

Mnl/.. Z. and Zienkiewit:7, O. C. (1984). Uniform formalization of t:onstitutive equations for clays and sands. In
Mech",,;n ol H"";,,eerillll ,\("ler;"ls (Edited by C. S. Desai and R. 11. Gallagher). p. 415. Wiley, New York.

Mmz. Z.. Norris. V. A. and Zienkiewit:7. O. C. (I 'J78). An anisotropic hardening model for soils and its application
to t:yelit: loading. 1"1.1. Nllmer . .-I"alysi., Melh. (;eof/"'c-!r. 2. 203.

Mwz. z.. Norris, V. A. ami Zienkiewia. O. C. (1979). Application of an anisotwpie hardening model in the
analysis of deformation of soils. C.'oll'clmique 29. I.

Mro/.. Z., Norris. V. A. and Zienkiewicz. O. C. (l9Kl). An anisutropie. critical state model for soils suhjet:t to
t:ydic loading. (;1'"le("hlli'/II" J I, 451.

Ohno. N. and Kachi, Y. (1986). A constitutive model of cyclic plastit:ily for nonlincarly hardening materials. 1.
ApI'/. .\fait. (." S.\{ E) 5J. 395.

Prager. W. (1956). A new method uf analyzing stresses and strains in wurk-hardening plastic solids. J. Appl.
Mech. (ASME) 2J.493.

Prevost. J. II. (1977). Mathematical modeling of monotonic and cydic undrained day behavior. 1111. J. NUlIIa.
Ml'lh. C,'olllah. I. 195.

Prevost. J. II. (1978). Anisotropic undrained stress strain behaviur of days. 1. Ceolech. £ngllg (ASCE) 104.
1075.

Prevost. 1. II. (1982). Two-surl;lt:e versus multi-surface plastit:ity theories: a critical assessment. 1"1. J. NUn/a.

AIIIII.I'"i" Ml'lh. (;,·o/('ch. 16.323.
Shaw, P. K. and Kyriakides. S. (1985). Inelastic analysis uf thin-walled tubes under cyclic bending. ItII. J. Solids

S'mCluro 21. 1073.


