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Abstract—Various constitutive models for the description of the elastoplastic deformation with an
anisotropic hardening and also a transition from the elastic to the normal-yield (fully-plastic) state
have been proposed in the past. Among them the two surface model has been widely used for
predictions of metal or soil deformation behavior, which is regarded as a simplification of the multi
surface model (a field of hardening moduli) extended from the kinematic hardening model. The
past formulation of this model is not given in a mathematically exact form with generality applicable
to materials with not only hardening but also softening behavior. In this paper, a reasonable
tormulation of the two surface model is given by deriving a mathematical condition which must be
satisfied in order that surfaces do not intersect in their relative translation and which will be called
a 'non-intersection condition™ and by proposing a reasonable measure to represent an approaching
degree to the normal-yield state. This model is extended to the three surface model which enables a
smooth elastic-plastic transition to be described. Besides, a loading criterion for hardening/softening
materials is derived in a stress formulation. Finally, some comments on past models or formulations
are mitde compared with the present formulation.

INTRODUCTION

An extension of the kinematic hardening model (Edelman and Drucker, 1951 ; Ishlinski,
1954 ; Prager, 1956) so as to describe even a deformation proceeding in the transition from
the clastic to the normal-yield (fully-plastic) state, which would obcy Masing’s rule (Masing,
1926). has been attempted by Mroz (1967, 1969) and Iwan (1967) independently. Their
extended models are, however, of complex form assuming multiple “subyield (nesting yicld)
surfaces™ encircled by a “normal-yield (bounding or limiting) surface™, which has been
called a “multi surface model™, Thercafter, based on them, a simplified model employing
a normal-yield surface and only one “subyicld (inner yield) surface™ enclosing a purely
clastic domain has been formulated by many workers (Dafalias and Popov, 1975, 1976,
1977 Krieg, 1975; Mroz et al., 1979 ; Hashiguchi, 1981) which has been called a “two
surface model™.

The past constitutive equations in the framework of the multi or two surface model
have not been formulated exactly on the basis of mathematical verifications, however.
Especially, little consideration has been given to formulating the mathematical condition
which regulates a surface so as not to protrude from an outer larger surface, i.e. which
keeps surfaces from intersection at their relative translation. Therefore, even though the
past equations could analyze the deformation of specialized materials exhibiting only a
hardening behavior, they give rise to a mathematical contradiction on the translation of
assumed surfaces in the deformation analysis of generalized material with not only hard-
ening but also softening behavior.

In this paper. the two surface model is formulated in mathematically exact forms. On
this formulation the “‘non-intersection condition™ of surfaces is derived, and then the
translation rule of the subyield surface is formulated so as to satisfy this condition. Besides,
assuming a reasonable measure to describe an approaching degree to the normal-yield state,
the plastic strain rate is formulated so as not to violate the non-intersection condition.
Further, this model is extended so as to describe the smooth elastic—plastic transition by
incorporating the third surface, named a “subloading surface™, which exists within the
subyicld surface and is geometrically similar to it. This model is called a ““three surface
model™, which is regarded as a combination of the two surface model and the subloading
surface model (Hashiguchi, 1980). Besides. the loading criterion for hardening/softening
materials is derived within the framework of the stress space formulation.
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Fig. I. The normal-yield state illustrated as an envelope curve of reloading state.

BASIC CONSTITUTIVE EQUATIONS IN THE NORMAL-YIELD STATE

A typical stress/strain curve of elastoplastic materials is schematically illustrated in
Fig. 1. First, one assumes that the normal-yicld state shown by the envelope curve of
reloading curves is described by

f@)-FK)=0 n
where one scts
¢ =o0—4. (2)

The second-order tensor a s a stress, and the scalar K and the second-order tensor 4 are
parameters to describe, respectively, the expansion/contraction and the translation of the
surface. For simplicity, onc assumes that the surface deseribed by eqn (1), called a “*normal-
yicld surface™, expands/contracts retaining a gecometrical similarity in a stress space. There-
fore, function f is to be a homogencous function of arguments. Then, let the degree of f
be denoted by n.

Let K where a superposed dot designates a material time derivative be a function of
some plastic internal state variables and the plastic strain rate €° in degree one by the
dimensional invariance of time.

Further, let 2 besgiven as

G I
@& = A1+ B tr (ev _,7_) 3
181/ 161 )

in accordance with the previous paper (Hashiguchi, 1981), where
&0 =1r g° 4)
A (20) and B (=0) arc scalar functions of K and 4, and the notation || | is used to

represent the magnitude.
By differentiating eqn (1) and substituting the relation

of nflk

2~ tr (ho)" ©)
_ef []es]

"= a&/ 36| ©)

one has the consistency condition
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tr {&(&'- % —;a>} =0 ™
o L, dYd 1F 1]
tr ["{G—AESI—BIT (89m)m—;i_d}}—0 (8)

by incorporating eqn (3).

Here. one assumes that the elastic deformation only can proceed when the stress exists
within the normal-yield surface and that the elastic property is not affected by the plastic
deformation. Then. in accordance with Drucker’s interpretation (Drucker, 1951), one
incorporates the associated flow rule

which is given as

& = Ad ©9)

where 4 is a positive proportionality factor. By substituting eqn (9) into eqn (8) the plastic
strain rate is given as

_tr (ng) .

&° *-5*11 (10)
where

3 l F' - a a 3 . 2 - &
D= Ktr(ag)+Atr- a+Btr |\ a -, ) (i

nl 4l

dF

= L 12
F dK (12)

K is a scalar function of stress, plastic internal state variables and a in degree one, which is
given by

fla)=F

Fig. 2. Normal-yicld and subyield surfaces.
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k=K (13)

TWC SURFACE MODEL

One introduces the subyield surface (Fig. 2) which is geometrically similar to the
normal-yield surface and translates within the normal-yield surface. Here, assume that the
current stress exists on or within the subyield surface and that the elastoplastic deformation
can proceed when it exists on the subyield surface. but only the elastic deformation can
proceed when it exists within that surface. Then, let the subyield surface be described by

S@)y=r"fK)y=0 (14)

where one sets

It

gz=o—d (15)
r (0 < r < 1) is a material constant and the sccond-order tensor & is a parameter to describe
a translation of the surfuace.

Now, let the conjugate point on the normal-yield surface having the same outer-normal
dircction as that of the subyicld surface at the current stress ¢ be denoted by g, (Fig. 2).
Namely, it holds that

1
G, = rd_ (16)
A, =i amn
where
6, =a,~4 (18)
of / (7]'1i
o] ,
n= (76/ g’ (20)

Here, assume that translation rule (3) of the normul-yield surface holds aiso in the
subyield state, provided that the stress in egqn (3) s regarded as the conjugate stress 4,,.
Hence, noting relation (16), one has

d=At+Bur [0 2 )2 1)
gt/ fal

Now, one considers the translation rule of the subyield surface, i.e. &. Since the subyicld
surface must exist within the normal-yicld surfuce, it must hold that

flé) s F (22)

where
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fley= r

Fig. 3. Normal-yicld and subyicld surfaces in contact.

o, =0,~a 3

letting o, denote the intersecting point of the subyield surface and the half line starting from
the point 4 and passing through the point & in the stress space (Fig. 2).
Expression (22) can be written as

a . . Y
tr (a&‘ 6.} < F when j(d“) = F (24)
in a differential form. Let the condition which must be satisfied in order that the surfaces
do not intersect but may contuact, such as expression (22) or (24), be called a “‘non-
intersection condition™,

In the state that the subyicld surface contacts with the normal-yield surface (Fig. 3) it
holds that

|
(;c = l":‘;(l when j‘(é“) = F (25)

where

(26)

=
H
2 0
|
"

By relation (25), expression (24) can be expressed as
of .
tr 5};“ < {(I-r)"F when f(a)y={l—r)y"F. 27

Further, noting the relation
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¢f n(l=r)"F 5
da  tr (n.a) e (8)
where
o i
ca {d,
no= o= (29)
o e
I Cal Cd,
the non-intersection condition (27) is rewritten as
. LF .
tr yn, a—;l—__a <0 when f(a)=(1-r)"F. (30)

In order to satisfy expression (30), one assumes the following relation, presupposing the
convexity of the yield surfaces (Fig. 3):

A

. 1L F .
a-—- Fa—;tﬂ a3y

where g1 (20) 1s a proportionality factor and
f=o0,—-0 (32)

which is also expressed as

4 (33)

=
]

Q
|
Q

by eqns (15), (16) and (18), where 4 is given by eqn (2), letting ¢ mean a current stress on
the subyield surface but not a conjugate stress on the normal-yield surface.
From egn (31) one has

Foo
" Fa-f—;t/f (34)

=y
I
R,

+

where g is given as

o120}

tr (af)

ji = (35)

by substituting eqn (34) into the consistency condition

o-10) - .
tr na—,—l—[;d = (36)

which is derived by differentiating eqn (14) and substituting the relation
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¢f nrF _
- = A.
&6 ur (Ad)

(37

Finally, one formulates the plastic strain rate so as to satisfy the condition s > 0. Since
the interior of the subyield surface is an elastic region, the associated flow rule holds also
for the subyield surface

& = (38)

where £ is a positive proportionality factor.
The inequality s > 0 results in

| F .

noting that
tr (af) >0 (40)

in eqn (395).
Substituting eqns (21) and (38) into expression (39) leads to

tr (id)— DA >0 (1)
where

D= " Ritr(id)+A e i+B i n") (42)
n llall

£ 1s a scalar function of stress, plastic internal state variables and 4 in degree one, which is
given by

k=KL (43)
Also, £ is the function that the argument 4 is replaced by 4 in the function &,

Now, noting that the plastic strain rate equation must reduce to eqn (10) in the normal-
yield state (6 = a,), one assumes for £ to be given by

: ne
where fand H are functions of the parameter
b= s tr (@) (45)
satisfy the condition
h=1 and H=0 when b=0. (46)

The parameter b is interpreted as the measure to describe the approaching degree to the
normal-yield state (Hashiguchi, 1981).

By letting the left-hand side of expression (41) be denoted by y and substituting eqn
(44) into it, one has
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i=1{th-\OD+H . (47)

which is not necessarily nonnegative.
In the case of

h#1 and H=0 (48)

one has
_ o h—1 - .
Yr=(Hh-1)Ds <= i tr (na)) (49)

which also is not necessarily nonnegative.
In the case of

h=1 and HZ=20 (50)
onc has
X =Hi (s1)

which is nonacgative, and therefore expression (39) or (41) is always satisfied.
Eventually, the plastic strain rate is given from eqns (38), (44) and (50) as follows:

L Ur (dd) _

= " 52
p+H" (52)

Here, note that in the hardening state satistying tr (ag) > 0 and D > 0, the smaller the
parameter b the larger the magnitude of plastic strain rate is. From this one knows that the
function # for the general material with a hardening behavior should be a monotonically
increasing function of 5.

The above modification based on the non-intersection condition is required also for
the multi surface model formulation (Mroz, 1967).

THREE SURFACE MODEL

The two surface modcel brings about an abrupt change of the strain rate/stress rate
relation when loaded from the stress state within the subyicld surface since the interior of
this surface is assumed to be a purely clastic domain, so that it cannot describe a smooth
clastic-plastic transition. This trend is remarkable especially when a current stress passes
through the contact point of the normal-yicld and the subyicld surfaces. As a more funda-
mental problem, the loading critecrion must include the judgement whether a current stress
lies on the subyield surface or not. i.c. yield condition (14) which leads to a disadvantage
in a stress/strain calculation, since it assumes an clastic domain.

Now, onc extends the foregoing two surface model so as Lo express the smooth elastic-
plastic transition in accordance with the three surface theory (Hashiguchi, 1981) which
incorporates a subloading surface (Hashiguchi. 1980) within the subyield surface. The
subloading surface is the surface that is gecometrically similar to the subyicld surface with
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Normal-yield surface
Subyield surface
Subloading surface

fla)= ¢
Fig. 4. Normal-yicld. subyield and subloading surfaces.

respect to # (Fig. 4) and passes always through a current stress point not only in a loading
state but also in an unloading state, and thus the loading criterion need not include a
judgement whether a stress lics on a subyield surface or not. In the subloading surface
concept the following purameter is introduced :

L@
r=1 {2 ey

which designates the ratio of the size of the loading surface to that of the subyield surface.
Hereinafter let the conjugate point on the subyicld surface be denoted by e, and then it
holds that

é, = é/R (54
i = f (55

where
G, =0, (56)

(57

Differentiation of egn (53) leads to

uﬁﬂ:u&%~&£+g%ﬂ. (58)

From eqn (36) and rewriting o as o, noting eqn (55), one has

&». (59)

| -
~|

umm:u&@+

Substituting eqn (58) into eqn (59), onc obtains
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| F R
tr (Ag,) == tr [ﬁ{o‘%; F(a\.—a)— E&}}. (60)

Here, one assumes that R, R is nonnegative in the loading state and is given by
R'R=U|&| 61)
where U (= 0) is a monotonically decreasing function of R, satisfying the condition
U=0 when R=1. (62)

Further, assume that the associated flow rule holds also for the loading surface. Then,
eqn (61) is rewritten as

R/R = U tr (@€") (63)
or

RiR=UZL (64)

Substituting eqns (60) and (61) into eqn (34) with eqn (35) and eqn (52) with eqn (42)
with regarding o in cquations of the two surface model to be a.., one has

. . VE

a=a+ atuf {65)
nF
(. ol =

tr {n(a— ,a——UHz"IIa)}

s nk 7 ] 66

Jlom e e ‘{r (ﬁ[{)A ] (66)

o tr (nid) - (67)

= D+HT U (id)"

o in D given by eqn (42) being a current stress. & and b are given by the same equations as
egns (21) and (45), respectively.

The two surface model predicts a discontinuous stress rate/strain rate relation and is
incapable of describing a plastic deformation due to the stress change within the subyield
surface the interior of which is assumed to be a purcly elastic domain. These shortcomings
are excluded in the three surface model. On the other hand, the three surface model predicts
an excessive mechanical ratchetting effect, since the center of similarity of the subyield and
the normal-yield surfaces is fixed in the center of the subyicld surface while an unloading
{clastic deformation) proceeds until the stress returns the center of similarity. This short-
coming would be modified by letting the center of similarity translate within the subyicld
surface.

A LOADING CRITERION

The plastic strain rate obeying the associated flow rule is generally given by

§" = Jn (68)
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tr (ng)
L

(69)

>
1]

as seen in eqns (10), (52) and (67). In eqns (68) and (69). 4 is a positive proportionality
factor, n a unit outer normal of the loading surface and L a function of stress and some
plastic internal state variables.

By substituting

¢ = E¢° (70)
£ = g—¢° (7
and eqn (68) into eqn (69). one has

. tr (nE@E~/in)}

j o kG im] (72)
L

where € is a strain rate, € an elastic strain rate and the fourth-order tensor E an elastic

modulus. Whiie from eqn (72) one obtains the expression of A4 by the strain rate instead of

the stress rate, let it be denoted by A

_tr(nEE)
A= 3t (nmy 3

It holds that
tr (nd) <0 (74)

in the unloading state, while expression (74) holds also in the loading state with a softening.
Since it holds that ¢ = £ in the unloading, expression (74) is rewritten as

tr (nke) €0 (75)

in the unloading state.

If L+tr (nEn) < 0, a plastic deformation cannot occur for tr (nEg) > 0 by the collateral
condition A > 0 for &° # 0. Further, if L+tr (nEn) =0, a plastic deformation can occur
only for tr (nE¢) = 0. These facts and expression (75) lead to the shortcoming that any
deformation cannot occur for tr (n£€) > 0, while real materials can undergo a strain rate
of any dircction (this point is fundamentally ditferent from a stress rate). On the other
hand, it L+1tr (nEn) > 0. a plastic deformation proceeds for tr (nE€) > 0, while an elastic
deformation proceeds for tr (n£g) < 0. Eventually, in order to describe a strain rate of any
direction, it must hold that

L+tr (nEn) >0 (76)

while L can take both positive and negative values but tr (nEnr) > 0 since tr (nEn) is of the
quadratic form and £ is a4 positive definite as known from tr (6°E£°) = tr (6£°) > 0 (§° # 0).
A loading criterion should be given as

é"#0 for tr(nEg) >0
é&" =0 for tr(nEg) <0 an

while constitutive equations with a purely clastic domain require a further judgement
whether a yicld condition (eqn (1) for the classical theory and eqn (14) for the two surface
model) is satisfied or not. Equations (77) were shown by Hill (1958) presupposing L > 0,
i.e. a hardening material and assumed a priori by Mroz and Zienkiewicz (1984) in a different
approach, i.c. a strain space formulation of plastic constitutive equations.
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On the other hand. consider 4 in eqn (69) expressed by a stress rate. The loading in
the state L < 0 brings about a softening in which tr (né) < 0 and L < 0 leads to 4 > 0.
However, the unloading tr (nd) < 0 in the state L < 0 also leads to 4> 0. Thus. £>0isa
necessary condition but not a sufficient condition for a loading state. Eventually. 4 cannot
be adopted as a quantity to define a loading criterion for materials exhibiting not only a
hardening but also a softening behavior.

COMMENTS ON PAST MODELS AND FORMULATIONS

Various models assuming plural surfaces have been proposed in the past: the two, the
multi and the infinite surface models. In what follows, some comments on these past models
and formulations are made comparing with the two and the three surface models formulated
in this paper.

Translation rule of subyicld surface

In the multi surface model, so-called a "model of a field of hardening moduli™ proposed
by Mroz (1967), the translation rule of the active subyield surface was assumed a priori as
follows:

&= f (78)

which was used by Mroz (1969), Prevost (1977, 1978, 1982), Faruque (1985) and Gilat
(1985) for the multi surface model formulation and by Krieg (1975), Lamba and Sidebottom
(1978), Prevost (1982), Chaboche and Roussclicr (1983), Bruhns (1984), Mcdowell
(19854, b), Shaw and Kyriakides (1985), Chaboche (1986) and Ohno and Kachi (1986) for
the two surface model formulation. Equation (78) coincides with eqn (34) in the case of
the non-hardening normal-yield surface, i.e. F=0and a = 0.

Also for the multi surface model formulation, Mroz ¢t al. (1978) adopted, however,
the different equation

—$ = (79

which was used by Mroz ¢f al. (1979) and Hashiguchi (1981) for the two surface model
formulation.
Further, Dafalias and Popov (1975, 1976, 1977) incorporated the equation

=i (80)

for the two surfiace model formulation. In eqns (78)-(80), i, st and i, arc positive
proportionality factors which can be expressed explicitly by substituting these equations
into the consistency condition (36). whereas they do not examine the positivity of i, s,
and ji; in their formulations of plastic strain rate equations.

Equations (68) -(70) do not satisty generally the non-intersection condition (30).

Measure of approaching degree to the normal-vield state
In the formulation of the two surface model, Krieg (1975), Dafalias and Popov (1975)
and Mroz et al. (1979) assumed the parameter

b= | BI/F" @8n

as a measure to describe the approaching degree to the normal-yield state.
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flor=r
1B > | By |
l’l! < IBE\!

Fig. 5. A measure of approaching degree to the normal-yield state.

As the current stress approaches the normal-yield state, b becomes smaller. On the
other hand. there exists the case that A" becomes larger inversely in that approach as
illustrated in Fig. S in which b = tr (if)d = bF' "A.

Whilc » would be a reasonable measure of approach to the normal-yicld state, 4 is
unacceptable as that measure.

The idea of vanishing elastic domain

Dafalias and Popov (1977), Mroz et al. (1979, 1981) and Mroz (1980) insisted the
validity of the idea of a vanishing clastic region as the limiting case of the two surface
model, in which the subyicld surface diminishes to a point. Further, they assumed that a
conjugate point on the normal-yicld surface lies on the extension of the stress rate vector
stemming from the current stress point or the center of the normal-yield surface. This idea
may be expected to be capable of describing the dependence of the direction of the plastic
strain rate on the stress rate, that is, the “pscudo-corner effect’™ and also the smooth elastic-
plastic transition.

For example, consider the softening state as shown in Fig. 6. There occurs a fatal

0

Fig. 6. An example of disproof for the idea of the vanishing clastic domain.
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contradiction that the conjugate point lies on the opposite side of the normal-yield surface
the outer-normal direction of which differs entirely from the actual direction of the plastic
strain rate £7, predicting the plastic strain rate £” with an extremely large value of b (or 4').

It would be adequate to assume a small subyield surface in order to express some
dependence of the direction of plastic strain rate on the stress rate. It would be, however,
physically unreasonable that the direction of the plastic strain rate depends mainly on the
stress rate but not on the stress state as is predicted by the idea of a vanishing elastic region.
This idea describes the stress rate dependence stronger than the corner effect of the yield
surface, since it makes the yield surface shrink to a point. Eventually. this idea is not
acceptable physically and mathematically at present.

Expansion rule of loading surface
The author (Hashiguchi, 1980) assumed the equation

R/R = UF (82)

in the previous three surface model. According to this equation, the current stress cannot
approach to the subyield surface but recedes from it in the non-hardening state £ < 0. On
the other hand. eqn (61) would be applicable to the generalized material with not only
hardening but also softening behavior.

The multi and the infinite surface models

In the multi surface model which was proposed by Mroz (1967) and Iwan (1967)
independently, the current stress transfers steadily to larger active subyield surfaces. This
model needs to memorize all of the assumed surfaces. Further, a reloading after a partial
reverse loading produces an abrupt change of the stress rate/strain rate relation when the
stress passes through the stress reversed point because the stress transfers abruptly to the
large subyicld surface which was an active subyicld surface just before the reverse loading
took place.

Mroz eral. (1981), Mroz and Norris (1982) and Mroz and Pictruszezak (1983) refined
the multi surface model mathematically by imaging a ficld of an infinite number of subyicld
surfaces the sizes of which range from a point to the normal-yield surface. A salient feature
of this formulation is the hypothesis of “stress reversal surface™. This is the surface which
was an active subyield surlace just before a reverse loading took place. Then, a new active
subyield surface expands contacting with the stress reversal surface at the stress reversed
point. This model, named an “infinite surface model”, may be regarded also as a reasonable
formalization of the loading surface concept introduced by Greenstreet and Phillips (1973)
for artificial graphite. It is a notable improvement of the multi surface model because it
nceds to memorize only three kinds of surface : an active subyield surface on which a current
stress exists, a normal-yicld (bounding or limiting) surface and stress reversal surfaces. In
the case of the cyclic loading with decreasing amplitudes, however, many stress reversal
surfaces should be memorized, on which stress reversal events took place before then.
Further, the abrupt change of the hardening modulus in a reloading after a partial reverse
loading cannot be avoided also by that modet.
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